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Abstract: Modeling energy demand in New Zealand is typically based on either a partial general equilibrium
model or models constructed from spreadsheet packages. The results show that electricity is forecast to be the
fastest growing energy demanded by households and the industrial sector for the next two decades. In this
paper we attempt to model and forecast electricity demand using two econometric approaches: Engle-
Granger’s error correction model (ECM), and the AutoRegressive Distributed Lag regression (ARDL)
approach. We investigate which model has the lowest forecasting error using a series of forecasting
measures. The ARDL approach has better forecasting performance than the Engle and Granger ECM in this

exercise.
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1. INTRODUCTION

One of the first applications of the Engle and
Granger [1987] cointegration method was to
forecast monthly electricity sales (Engle et.al,
1989). Lately, however, a number of other
methods have been applied to this task.
Abeysinghe and Boon [1999] tested six methods
for estimating elasticity and found that they give
conflicting results. They concluded that Engle
and Granger’s error correction method (ECM)
outperformed the other alternatives for
estimating elasticity. This paper discusses two
methods, namely, Engle and Granger’s [1987]
ECM and the ARDL approach due to Pesaran
et.al. [1996], and apply these two methods to
modelling electricity demand in New Zealand.

2. THE EXISTING LITERATURE

Dahl [1994] surveyed studies on electricity
demand and found that most of the studies used
static or partial adjustment models. Most of the
papers, however, did not test the forecasting
ability of the models. However, Jones [1993]
tested the forecasting ability of the static and
partial adjustments models comparing them
with the general to specific (GTS) or dynamic
regression model. Jones [1993] concluded that
“the general to simple approach appear to offer

a satisfying new methodology for generating
superior forecast models of petroleum consumption
and other energy use patterns” (p.698).

However, Chan and Lee [1997] disputed the Jones
results, arguing that although the GTS approach had
the advantage of reducing potential
misspecification errors, it may overlook that most
of the time series data are non-stationary. To
overcome this problem, an alternative solution is
the use of an ECM. Chan and Lee [1997] favoured
the Engle and Granger ECM approach. In this
paper we compare the forecasting ability of the
Engle and Granger ECM and the ARDL approach
using data from the electricity sector in New
Zealand.

3. DATA AND METHODOLOGY

Most data were taken from the energy database of
the International Energy Agency (IEA). The series
are annual for New Zealand, 1960-1999, and cover
the industrial, commercial and residential sectors.
All energy data are in million of tons oil equivalent
(Mtoe) units. For the ECM and long-run models
additional data on fuel prices, the CPI to proxy
prices of other goods, real GDP (PPP adjusted)

" were utilised. Data on average annual temperature

(1960-1999), were taken from the New Zealand
National Institute of Water and Atmosphere
(NIWA). Although we would have preferred to use
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quarterly data our analysis was constrained by
the annual energy data from the IEA. All data
were transformed to natural logarithm.

In the household sector Beenstock et.al [1999]
use both a nested and a non-nested demand
function. In the nested household demand
function, the model is of the form of a
behavioural equation:

H=HEC,P;T)+u (1)

where H denotes household sector, P is the price
of electricity and T measures meteorological
influences. It is also possible to formulate a
non-nested model of the form:

H=HI(C),P; T) +v. ‘ 2)

In the non-nested model the variable C is
replaced by Household Income, which in turn,
determines how much of the household income
is to be spent on consumption as implied by
I(C). .

For the industrial sector they use a
behavioural model of the form:

I=1IQ,P,; T) +e. €)]

where Q denotes industrial production, P; is the
relative price of electricity in the industrial
sector, and e is an assumed iid disturbance term.
Because of data restrictions Beenstock et. al.
[1999] were restricted to using a nested demand
function in both the household and industrial
sectors.

In this paper, we follow the theoretical
model in Beenstock et. al. [1999] using annual
data. The model for the household sector is
non-nested of the form:

H=(C,P.,P,;T)+e. 4)

where H is household electricity consumption,
C is consumer spending proxied by real GDP, P,
is the relative price of electricity, P, refers to the
prices of other goods and is proxied by the
consumer price index (CPI). T wmeasures
meteorological  influences  proxied by
temperature. For the industrial sector the model
is of the form:

I=(Q,P,P;,T) +v. - ®

where Q is industrial production proxied by
real GDP, P; is the relative price of electricity in
the industrial sector and P, is relative price of
other goods proxied by the CPI. Finally, for the

final energy consumption, we use a model of the
form:

TFC =(G,P; P, T) + u. (6)

where G measures total production proxied by real
GDP, P, is relative price of fuel, P, is the CPI and T
is the same temperature variable used in the models
for the household and industrial sector.

The above models were estimated using the Engle
and Granger’'s ECM and AutoRegressive
Distributed Lag (ARDL) approachs. The merit of
the ARDL approach is that it can be applied
irrespective of the order of integration of the
variables. The merits of the Engle and Granger
ECM are that the short and long run effects can be
consistently modelled via the disequilibrium
adjustment to a long-run equilibrium.

31 Integration properties of the data

The first step in the estimation and testing of the
models is to determine the order of integration of
the data. Hendry and Juselius [2000a,b] regard
testing for integration properties as an essential first
step. The ADF and Phillips and Perron [1988] (PP)
tests are used for this purpose with the results
presented as Table 1 below.

32 Engle and Granger’s Error Correction
Approach

The first model estimated uses the Engle and
Granger approach and can only be applied if the
variables are I(1) and cointegrated. In this case the
variables can be first-differenced and the error-
correction (ECM), term from the cointegrating
regression added as in equations (7).

k 1
AX, =0+ YEAX, ; + Y PAY,  +ECM +g, @)
i =)
The lag lengths k and 1 are particularly important as
the lag length chosen in the VAR can significantly
alter the result. We used the Akaike Information
Criteria (AIC) to determine the optimal lag length.

3.3 Autoregressive Distributed Lag
Regression (ARDL) approach of
Pesaran et al [1996].

The main advantage of this approach to testing and
estimation is that it can be applied whether the
regressors are I(0) or I(1) and avoids the pre-test
problems associated with standard cointegration
analysis.

The first stage of the process involves establishing
the existence of a long-run relationship between the
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variables and is tested by considering the joint
significance of the coefficients of the lagged
levels variables Y.; and X,; in an equation like
(8) below:

X =0t SLAX, 4 SN, + A 4K, st (®
i=l =

using tables presented in Pesaran et al. [1996].
If the null hypothesis of no long-run relationship
is rejected, the ARDL model can be established
and either a long-run or ECM version of the
model constructed. The model can be used for
dynamic forecasts on either the levels or first-
difference version.

4. EMPIRICAL RESULTS

Table 1 presents the results of testing for the
order of integration of the data. Both the ADF
and PP tests imply that the price of both
residential and industrial electricity appear to be
I(0), as well as temperature, while the rest of
the variables are I(1). Given most of the
variables are I(1), we then test for cointegration
between the I(1) variables.

Table 1. Testing for unit roots (industrial and
commercial), log-levels and first differenced,
1960-1999: Augmented Dickey Fuller.

For industrial and commercial electricity
consumption, there is no cointegrating relationship
with the other variables, either bivariate or
multivariate.

Table 2. Testing for bivariate cointegration
between variables and indus/comm electricity
consumption, 1960-1999.
Max
ariable eigen. Trace H, H, VAR
Lgdp 1005 149 r=0 r=1 1
485 485 r<=2 r=2
Itemp 1421 1933 r=0 r=1 1
512 512 r<=2 r=2
Price 1396 1897 r=0 r=1 1
501 501 r<=2 r=

Proceeding to test for cointegration between
commercial electricity consumption and its
determinants, tests for bivariate cointegration found
none as shown in Table 3.

Table 3. Testing for bivariate cointegration
between variables and commercial electricity
consumption, 1960-1999.

Max.
Variable eigen. Trace H, H; VAR

First
Variables Levels Differenced CV_ Lags|
industrial -2.24 -3.94 353 2
commercial -1.75 -4.70 353 1
indust/com** -1.64 -4.02 353 2
tfc* -1.16 -4.09 353 1
residential -2.59 -4.21 353 1
gdp 29 -3.85 353 2
pind -4.74 -4.8 353 2
pres -3.53 -4.65 354 1
temp -4.03 -6.05 353 1

Lgdp 12.36 1839 r=0r=1 1
6.03 603 r<=2r=2

ltemp 14 2323 r=0r=1 1
9.23 923 r<=2r=2

price 17.01 2684 r=0r=1 1
9.82 982 r<=2r=2

*total final energy consumption. ** = industrial/commercial
lenergy consumption. pind = industrial electricity price.

pres = residential electricity price. temp = annual average
temperature. :

Cointegration is investigated between four
measures of electricity consumption - industrial
electricity consumption, commercial electricity
consumption, industrial and commercial
electricity consumption combined, residential
electricity consumption, and total final
electricity consumption — and the other
variables (real income (gdp), temperature and
the relative price of both industrial electricity
and residential electricity). The results are
presented in Tables 2 — 6.

Table 4 considers the existence of cointegration
between residential electricity consumption and
income, temperature and residential electricity price
but found no bivariate cointegration relationships.

Given no cointegrating relationships were found
between either industrial, commercial or residential
electricity consumption and the other variables, we
then tested whether a cointegrating relationship
could be found between total final end-user
electricity demand consumption and the other
variables.

We found that there is a cointegrating relationship
between total final end-user electricity
consumption, real income, the price of electricity
and fuel and the price of other goods, as shown in
Table 5. Because the other measures of electricity
were not cointegrated with income, temperature or

- the relative price of electricity, we decided to use

the ECM and GTS methods to model only for final
electricity consumption. The results are presented
below as section 4.1 and 4.2.
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Figure 3. Actual and forecasted values using
Engle and Granger’s ECM.
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Figure 4. Actual and forecasted values using
the ARDL ECM.
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Figure 5. Plot of the actual and forecasted
values using the ARDL approach.

The trend seems to show that although the level
of TFC is increasing, it is increasing at a
decreasing rate.

5. CONCLUSIONS

In this paper we use two approaches to analyse
the pattern of electricity consumption in New
Zealand. We start by examining the integration
and cointegration properties of the energy
disaggregates (coal, oil, gas, electricity) and
found that they do not cointegrate with energy
determinants. However, we found that total
final electricity demand cointegrates with some
of it’s determinants. This enables us to model
total final electricity as an ECM using the Engle
and Grangers approach. However, the ARDL
approach enables us to model the ECM without
pretesting whether the variables are I(1) or I(0).

We conducted various stability tests and found
no evidence of instability in the variables used
in both approaches. We compared the
forecasting errors using four measures and also

plot the forecast values of both approaches. It
seems that the ARDL approach is favoured over the
sample period studied. Further studies on the
forecasting ability of the ARDL approach is
needed.
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